
A wavelet-adaptive method  
for multiscale simulation of turbulent flows  

in flying insects 
 
 Kai Schneider 

I2M, Aix-Marseille Université, France 
 

joint work with 
Thomas Engels1, Julius Reiss1, Marie Farge3  

 

1TU Berlin, Germany, 2CNRS, ENS Paris, France 

X WWLET 
Wavelets and Applications 

November 10-11, 2021, São José dos Campos, SP, Brazil 1	



2	

Outline 

•  Motivation 
•  Governing equations and numerical method 
•  Multiresolution analysis and grid adaptation 
•  Parallel implementation 
•  Numerical results and performance 
•  Bumblebee in the wake of a fractal tree 
•  Conclusions 



3	

Computa(ons	of	flapping	insects	

Ref.:	T.	Engels,	D.	Kolomenskiy,	K.	Schneider,	F.O.	Lehmann	and	J.	Sesterhenn.		Phys.	Rev.	Le+.,	116,	028103,	2016.			
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Motivation 
•  Computing multiscale flows in complex geometries 

major challenge for computational fluid dynamics, 
especially in the turbulent flow regime 

•  Wavelets and related multiresolution analysis techniques provide likewise a 
mathematical framework and yield reliable error estimators, coupled with high 
computational efficiency; thus they are well suited for developing adaptive solvers 
with error control 

•  boundary conditions for complex geometries, in particular at 
solid walls, the family of immersed boundary methods (IBM) 

•  Artificial compressibility method large but finite speed of sound and avoids solving 
elliptic equations 

Ref.:		T.	Engels,	K.	Schneider,	J.	Reiss	and	M.	Farge.		A	wavelet-adapMve	method	for	
	mulMscale	simulaMon	of	turbulent	flows	in	flying	insects.	
Commun.	Comput.	Phys.,	30(4),	1118-1149,	2021.	arXiv:1912:05371	
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How to introduce adaptivity ? 
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Thresholding	of	the	wavelet	coefficients	
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Lifted biorthogonal wavelets 

To increase (or add) number of vanishing moments to the point value MRA we use lifting: 

Ref.:  W. Sweldens. The lifting scheme: A construction of second generation wavelets.  
SIAM J. Math. Anal. , 29(2):511–546, 1989. 
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CDF wavelets 
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CDF wavelets 
CDF	4/0	 CDF	4/4	
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Approximation of first order derivatives 

Ref.:   C. K.W. Tam and J. C. Webb. Dispersion-relation-preserving finite difference  
schemes for computational acoustics. J. Comput. Phys. , 107(2):262–281, 1993. 

For second order derivatives, classical centered fourth order schemes are used. 
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Parallelization 
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arXiv:1912.05371		
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Data Structure 

Grid layout                                                       Memory layout 
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Design of the computational grid 

used	here	

Eigenvalues	of	d/dx	
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Parallelization aspects 

Load	balancing.	
Locality	preserving.	
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Numerical results 
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Three vortices (2D) 

Four	types	of	simula(ons:	
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Three vortices (2D) 
Time	
evolu(on	of	
The	vor(city		
field.	
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Three vortices (2D) 
Ini(al	condi(on.	
	
Vor(city	field	and	
Adap(ve	block	
grid	
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Three vortices (2D) 
Final	(me	used	
for	error	
Computa(on.	
	
Vor(city	field	and	
Adap(ve	block	
grid	
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Three vortices (2D) 
Decay	of	the	compressibility	error:	
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Three vortices (2D) 
Decay	of	the	error	as	a	func(on	of	the	grid	size:	
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Three vortices (2D) 
Decay	of	the	error	as	a	func(on	of	the	thresholding	parameter:	
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Impulsively started cylinder (2D) 

Vorticity field with block-based grid superimposed in the lower half. 

Level 1 computation (coarse). Level 4 computation (fine). 
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Impulsively started cylinder (2D) 

Computational parameters: Mask function for the sponge. 
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Impulsively started cylinder (2D) 

Drag coefficient as a function of time, compared with results from the literature. 

Our results are obtained with CDF 4/0 wavelets. 
Reasonable agreement after t=0.5. 
ACM not well suited for impulsive start. 
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Flapping wing (3D) 
Suzuki’s	test	case.	A:	visualiza(on	of	the	wing	beat.	

The	rigid	wing	moves	in	a	horizontal	stroke	plane	with	varying	angle	of	aOach.	
The	mo(on	is	symmetrical	in	down	and	upstroke.	
	
Ref.:		K.	Suzuki,	K.	Minami,	and	T.	Inamuro.	Li^	and	thrust	generaMon	by	a	bu_erfly-like		
Flapping	wing-body	model:	Immersed	boundary-la`ce	Boltzmann	simulaMons.		
J.	Fluid	Mech.	,	767:659–695,	2015.	
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Flapping wing (3D) 

Computa(onal	parameters	used	in	the	simula(ons:	



Flapping wing (3D) 
Time	evolu(on	of	liQ	and	drag	and	comparison	with	results	from	the	literature.		
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Bumblebee 
Wingbeat of the bumblebee model in forward flight: 

During the downstroke the angle of attack is more 
elevated than during the upstroke. 
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Bumblebee 

Computational parameters for three levels of simulation. 
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Bumblebee 
Lift and drag force. 

Results obtained with CDF 4/0 wavelets. 
Engels et al. 2016 are Fourier pseudo-spectral computations with Flusi. 
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Bumblebee 

Grid sparsity as a function of time.  

Results obtained with CDF 4/0 wavelets. 

coarse	

medium	

fine	
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Bumblebee 
Bumblebee simulations: coarse grid 

2D projection of the computational grid. 

Visualization of the flow field. 
Isosurface of vorticity magnitude. 



53	

Bumblebee 
Bumblebee simulations: medium grid 

2D projection of the computational grid. 

Visualization of the flow field. 
Isosurface of vorticity magnitude. 
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Bumblebee 
Bumblebee simulations: fine grid 

2D projection of the computational grid. 

Visualization of the flow field. 
Isosurface of vorticity magnitude. 



55	

Computational performance 
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Computational performance 

Influence	of	block	size	

Influence	of	block	size	

Scaling	
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Bumblebee behind fractal tree 
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Ref.:	T.	Engels,	K.	Schneider,	J.	Reiss	and	M.	Farge.		A	wavelet-adapMve	method	for	mulMscale		
SimulaMon	of	turbulent	flows	in	flying	insects.	Commun.	Comput.	Phys.,	30(4),	1118-1149,	2021.		
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What next? 
AdapMve	computaMons	of	insects	with	flexible	wings.	

Ref.:	H.	Truong,	T.	Engels,	H.	Wehmann,	D.	Kolomenskiy,	F.	Lehmann	and	K.	Schneider.		
An	experimental	data-driven	mass-spring	model	of	flexible	Calliphora	wings.	
Bioinspira?on	&	Biomime?cs,	doi.org/10.1088/1748-3190/ac2f56,	2021,	in	press.		
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