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Ref.: T. Engels, D. Kolomenskiy, K. Schneider, F.O. Lehmann and J. Sesterhenn. Phys. Rev. Lett., 116, 028103, 2016.
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Motivation

Computing multiscale flows in complex geometries
major challenge for computational fluid dynamics,
especially in the turbulent flow regime

Wavelets and related multiresolution analysis techniques provide likewise a
mathematical framework and yield reliable error estimators, coupled with high
computational efficiency; thus they are well suited for developing adaptive solvers
with error control

boundary conditions for complex geometries, in particular at
solid walls, the family of immersed boundary methods (IBM)

Artificial compressibility method large but finite speed of sound and avoids solving
elliptic equations

Ref.: T. Engels, K. Schneider, J. Reiss and M. Farge. A wavelet-adaptive method for
multiscale simulation of turbulent flows in flying insects.
Commun. Comput. Phys., 30(4), 1118-1149, 2021. arXiv:1912:05371
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Observation: High resolution is not required everywhere at all times.

Idea: Refine grid where necessary.
Question: How to know where refinement is required?

» Replace Fourier discretization by finite differences and allow local refinement /
coarsening of the grid

o Use wavelets as local reqularity estimators instead of the more heuristic criteria
for adaptive mesh refinement (vorticity, strains, etc)

o We point out differences to other available adaptive methods



: %Physual Model: Governing Eqm &@

A|x Marsellle

o For simulations of insect flight, the fluid can be approximated as incompressible

(here, density is normalized and s is a general coordinate)

~Vp+ vV
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- 7Phy5|cal Model: Incompressibility

« Forincompressible flow, a Poisson equation usually has to be solved, which is very
demanding on adaptive grids

[ Aix:Marseille
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« Away to overcome this difficulty is using the method of artificial compressibility
(ACM) [1,2] (some similarities with the Lattice-Boltzmann Method)

Ou = -u-Vu-Vp+rViu
op = - gv‘@
Ulp, 5.0 (1) = ug(s,1)
u(z,t=0) = uy(z)
pz,t=0) = po(z)

« Ohwada [2] showed that this method is second order, (but their test cases are a
bit weak)

_ -2
luacn — unelly = O(C )
as Cp = o0
[1] Chorin. A numerical method for solving incompressible viscous flow problems, J. Comput. Phys,, 1967.

[2] Ohwada et al,, Artificial compressibility method revisited: Asymptotic numerical method for incompressible Navier-Stokes equations, J. Comp. 7
Phys. 2010
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o Often, ACM was used with subiterations (pseudo-time), e.g. [4]

« ACMis a transport of divergence: requires some outflow or damping for removal.
Ohwada proposes dashpot-damping, works for periodic flows

Ou = -u-Vu-Vp+vViu
op = —CSV-@—Cyp

o We prefer non-reflecting outflow boundary conditions in most cases (exterior
flows)

« Simple, explicit, 4 order finite difference discretization [3]

» Boundary conditions enforced with penalization method.

[3] Tam, Webb, Dispersion-Relation-Preserving Finite Difference Schemes for Computational Acoustics, J. Comp. Phys. 1993
[4] H. Liu, Integrated modeling of insect flight: From morphology, kinematics to aerodynamics, J. Comp. Phys 2009



TR : WD o J W
3 Physical Model: Penalization.
« Penalization is mathematically justified and physically inspired
X
O = ... - o (u - u,)
n
w_/
penalization
0
)
0 in ()
X(0) =¢0<x<1 near 0
|1 in {0 >
0(z)
Engels et al. FluSI: A novel parallel simulation tool for flapping insect flight using a Fourier method with volume penalization. SIAM, 2016 9

Angot et al. A penalization method to take into account obstacles in incompressible viscous flows. Numer. Math., 1999
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o The complete physical model is as follows:

du = —u-Vu-Vp+Viu- 2 (w-u)- 22 (u-uy)
C,, Csp

~CyV - u- CP—C—(P Poo)
Sp

Oip

o The parameters need to be fixed. Physical intuition gives ideas
Co > [yl
Co < ag
Cp =0
Cy = 0 for exterior flows
Csp = 0,C, = 1 for periodic flows

o Choice of penalization parameter is solved problem: (error balancing)

= (K%/v) A
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How to introduce adaptivity ?
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o We can base the decision which grid points are important on Hartens point-value
multiresolution [1]. We show later how it relates to biorthogonal wavelets

« Starting from a hierarchy of nested grids with odd number of points, here 1D:

0—0—0—0—0—0—0—0—0 J =3

J_ (127 _ fo-J27 0 0 0 0 0 J=2

X —{%‘}z‘:o—{Q Z}z’:O o . o J=1
0 0 J=0(

o Define restriction operator: Define prediction operator:
0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0 J =4 0—0—0—0—0—0—0—0—0 J =13
‘ Riss-ru(') = u(e™) Proyyan u() = u(@’)

0—0—0—0—0—0—0—0—0 /=3 Omte—OH-OH-Ote-O—i-04-04-04-0 ] = 4

o Restriction: low pass or simple decimation, Prediction: interpolation with some
order

[1] Harten, Discrete multi-resolution analysis and generalized wavelets, Appl. Numer. Anal. 1993

[2] Deslauriers & Dubuc, Symmetric iterative interpolation processes, Constr. Approx. 1989 L2
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o Define restriction operator:

J=4
\ Risy-r () = u(x™1)
0—0—0—0—0—0—0—0—0 J =3 O=H=-0—H=0—H-04=0-4-0—4-0—4-0—40 | = 4

o Computation of Detail coefficients:

dJ—l

— J
2i—1 — U — Pr15gRy5-1u;

- Prsyet ux’) = u(x)

Harten, Discrete multi-resolution analysis and generalized wavelets, Appl. Numer. Anal. 1993
Deslauriers & Dubuc, Symmetric iterative interpolation processes, Constr. Approx. 1989 13
Domingues et al. Adaptive Multiresolution methods. ESAIM Proceedings 2011
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« Each point can be associated with a detail coefficient, and we can decide:
d(z)|> C. — keep point
| ( )l_ ¢ ' PP _ Thresholding of the wavelet coefficients
|d(z)| < C. — discard point
» Then the reconstruction error is bounded by:
Jufe) - o(a)], < KC.
o Decay of details is related to local regularity:
’ f Domingues et al. Adaptive Multiresolution
U R e e S S S S methods. ESAIM Proceedings 2011
FIGURE 6. The function f(x) (left) and the position of the significant wavelet coefficients 14

|d; x| <5%107* (right).
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| 7» Multiresolution and Wavelets. ?5(

» Biorthogonal wavelets decompose a function in scaling + wavelet coefficients

fla)= Y (1,6e)) e )+§:Z[<f@(m)>:¢;’(r)

€L J=01€Z

(d-iddlo-1)=bi;  (vla-idle-3))=b

+ Wavelets 1) and scaling functions¢ (and dual functions 1), ¢ ) are defined with
filters (high- and low pass). These can be obtained by re-arranging Hartens MR.

Schneider, Vasilyev. Wavelet Methods in Computational Fluid Dynamics, Ann. Rev. Fluid Dyn. 2010.
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Lifted biorthogonal wavelets

To increase (or add) number of vanishing moments to the point value MRA we use lifting:

More precisely we determine lifting coefficients s, such that

p(x) =9°(x) = Y _sugp®(2x—n), (3.6)
P(x)= ZE,@Old(Zx—n) + Zs,,lp"ld(x—n), (3.7)

requiring that the new i has M vanishing moments, i.e., [ xP¢p(x)dx=0 for p=0,---, M—1.
In the linear interpolation case, i.e., CDF 2/0, we have sy =s; = —1/4 and for the result-
ing lifted filters we get {g,; n=—3,---,1} ={1/8,—1/4,3/4,—1/4,—1/8} and {h,; n=
—2,---,2}={1/8,—-1/4,-3/4,—1/4,1/8}, yielding thus CDF 2/2 wavelets, which have
two vanishing moments. Applying lifting to the cubic interpolatory wavelets CDF 4/0
yields CDF 4/4.

Ref.: W. Sweldens. The lifting scheme: A construction of second generation wavelets.
SIAM J. Math. Anal. , 29(2):511-546, 1989.

16



Table 1: Filter coefficients for the CDF4/0 and CDF4/4 interpolating biorthogonal wavelets.

CDF wavelets

CDF4/0 CDF4/4
i h Q h g h < h g
7 —1/256
-6 —1/256 0
-5 0 9/128
-4 9/128 1/16
-3 —1/16 —1/16 —1/16 —63/256
-2 1/16 0 —63/256 1/16 0 —9/16
-1 0 9/16 9/16 0 9/16 87/64
0 1 -9/16 1 87 /64 —9/16 1 —9/16
1 1 9/16 1 9/16 1 9/16  —63/256
2 —9/16 0 —63/256 —9/16 0 1/16
3 0 —1/16 —1/16 0 —1/16 9/128
- 1/16 9/128 1/16 0
5 0 —1/256
6 —1/256

(
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Figure 2: Scaling functions ¢, wavelets ¥ and dual functions ¢, ¢ for the CDF 4/0 (left, black) and CDF 4/4

wavelets (right, green).

18
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Approximation of first order derivatives

In the present work, we use the optimized fourth order scheme proposed by Tam and
Webb [6] for first derivatives. It is built on the idea of combining a fourth- and a sixth
order approximation using standard finite differences, yielding

(8xu)i%Ax_1 (Z (,)/a(4th)+(1 ,)/) (6th)) ui—i—j) )
]

and a](&h)

a degree of freedom -y, which is then used to optimize the modified wavenumber. The
resulting stencil is

(4th)

where 7 j are classical, central finite differences. The combination provides

a\™") =~ = {—0.02651995,0.18941314, —0.79926643,0}, (—3<j<0).

Ref.: C.K.W. Tam and J. C. Webb. Dispersion-relation-preserving finite difference
schemes for computational acoustics. J. Comput. Phys. , 107(2):262-281, 1993.

For second order derivatives, classical centered fourth order schemes are used.
19
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Parallelization

20
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That sounds great, how come people still use non-adaptive grids?
- Caching efficiency: RAM is 1D, CPU reads memory pages

~ Still, most algorithms are memory bound, even with reqular datastructures (exception:
Fourier spectral methods)

- Efficiency of unstructured / sparse grids is typically low
+ Early adaptive codes used dense data structures [1]

+ Block based data structure as a compromise between CPU requirements and theoretical
efficiency [2]

- Separation into heavy and light data
- Use tree-like indexing for block management (slow, but far less blocks than points) [3]

+ Inthe following, we present the ideas on which our new code “WABBIT” (Wavelet Adaptive
Block-Based Solver for Interactions/Insects with Turbulence) [4]

* Open source and freely available on https://github.com/adaptive-cfd/WABBIT

[1] Holmstrom. Solving hyperbolic PDEs using interpolating wavelets SIAM J. Sci. Comp 1999

[2] Domingues et al. Adaptive wavelet representation and differentiation on block-structured grids. Appl. Numer. Math. 2003
[3] Gargantini. An effective way to represent quadtrees. Commun. ACM 1982 21
[4] Engels et al. Wavelet-based adaptive simulations of multiscale flows around complex geometries, arXiv:1912.05371
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Data Structure

Grid layout Memory layout

grid layout

memory layout

allocated, but unused storage

Figure 1: Data structure. Left: grid layout, composed of N =7 blocks of the same size but at different positions
and levels. Right: memory layout, the grid is stored as simple, contiguous array. Memory allocation done once
on startup, but only the portion required at time f is used.

22
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+ The grid is composed of blocks of size B”

o Gradedness: no more than a factor of two in spacing between two blocks

o




o Detail coefficients are
obtained by coarsening,
then refining (interpolation)

o Their magnitude is related to
the local regularity of the
solution

o Largest detail coefficient
determines state of the block

|
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EEEEEEEEES

Q# O % O%0O*0*

ok % ok ok % ok k% k3
Q% O % 0% OOk
sk sk ok ok ok ok K ks
0% 0 % 0% 0 0
sk sk ok ok sk ok ok ks

Aix--Marseille
universite




(Aix Marseille

universite

Design of the computational grid

A Type A Type B
BSZS BAIS
A= TYE(1B; —1) Ax =2"7L/B,

used here Not used here O
B ye
: S
5 % G s W s S ST BB F Eigenvalues of d/dx %
® >
o 0 0 e O o o ® =)
0.75 4 O 2 )
O | C ® w0
C 0504+ x D e 8
DR
o o o e e e 0 0 o o o o 0.25 1 X qg
e e ¢ 0 0 o ~ 0.00 ¢ ® \ﬂ
S
0 0 0 e o 0 0 o o o o _0.25. ” % 8
—0.50 - x¢ ©
D ® Q
o o o o o o —0.75 1 ® e
T T T g
o o o o o & —-0.10 —-0.05 0.00 c
A S
P

Figure 1: A: Two possible block definitions using the same block size Bs. Type A includes all of the block
borders, which are then redundant with the neighboring block, while type B assigns each block border to one
block. Present work uses type A grids exclusively. B-D: Different grid definitions for a coarse (open circles)
and fine block (full circles). Ghost nodes are not shown. B: spacing between the blocks corresponds to fine
block spacing on both sides. C: same as B, but using coarse block spacing. D: mixed interblock spacing E: 2
eigenvalues of discrete first derivative (a Toeplitz matrix) for grids B-D in the complex plane.
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il dzPredlctlon & Time Stepping Algénth .

The basic algorithm to advance the solution from tn to tr+! reads

1) Refinement stage. The entire grid is refined, to be sure that it is sufficient to
contain the solution at the new time level (quadratic nonlinearities)

2) Evolution. First synchronize layer of ghost nodes on each block.
Then solve the PDE using finite differences (4™ order) and advance in time (RK4)

3) Coarsening. Check the details and keep only those blocks where the details are
significant, i.e. larger than C-

4) Load balancing. Distribute the blocks among the MPI processes

Liandrat, Tchamitchian, Resolution of the 1D regularized Burgers equation using a spatial wavelet approximation, NASA Contractor Rep. 1990
Harten, Multiresolution algorithms for the numerical solution of hyperbolic conservation laws, Comm. Pure Appl. Math. 1995
Schneider, Vasilyev, Wavelet methods in computational fluid dynamics, Ann. Rev. fluid mech. 2010

(
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Error balancing ««F

o We have the following scaling laws for the error contributions:

© eaom = 0(Cy?)

A def
uta — uacm| = erpy = O(Az?)

||UACM — U

Az, A def

(Note the thresholding error is a conservative estimation)
o Tobalance the errors, we are left with the following relations
Co x Az~*
Ce opt X Az’

(Note Ct opt o Az* is a more optimistic but less rigorous estimate)
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Parallelization aspects

Load balancing.
Locality preserving.

Figure 2: Parallel load balancing. Shown is a snapshot of the (fine resolution) bumblebee simulations presented
in Section 5.3. In the two planes, the block borders are shown along with the MPI rank. Here, Ncpy =960,
and each CPU is assigned a random color. The space-filling curve results in a locality-preserving distributions of

blocks.
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Numerical results

29
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Three vortices (2D)

Four types of simulations:

. Incompressible Navier-Stokes (INC) solved with a Fourier pseudospectral method
[33], which is the quasi-exact reference solution;

. ACM solved with the same Fourier pseudospectral method, as quasi-exact solution
of the artificial compressibility equations;

. ACM solved with the fourth-order finite difference method on equidistant grids,
with and without filtering at the finest scale;

. ACM solved with the fourth-order finite difference method on dynamically adap-
tive grids using multiresolution analysis with CDF 4/0 and CDF 4/4 wavelets.

30
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evolution of

The vorticity
field.

Three vortices (2D)

(
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Initial condition.

Vorticity field and
Adaptive block
grid

Three vortices (2D)

B

-1.5 -1.0

—0.3

0.0

0.5

1.0

1.5

(
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Three vortices (2D)

Final time used C
for error
Computation.

Vorticity field and ==
Adaptive block :
grid

t=20

—1.3 —1.0 —0.5 0.0 0.5 1.0 1.5 33
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Three vortices (2D)

Decay of the compressibility error:

D D

—— Uy

1071 4 —— Uy

—— p

slope: -2.00
104 :
10—3 .
10° 16+ 107 103

(
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Three vortices (2D)

Decay of the error as a function of the grid size:

107! E 1.7 a
= 2.2 / 2.1'//‘@

g 1072 /(' &
§ Co=10 33 / - 0
%x 10-3 /9/ / /e/

3 :

“;’. 10~4 E 5 /2/

Q 5 / 37
S 1075 /

|E —#— adaptive (CDF4/0)

&)- 10-6 . —#— adaptive (CDF4/4)
B _/" —6— equidistant (CDF4/4)
o 40 —o— equidistant (CDF4/0)

10° 5 s .
—&— equidistant (no filter)

1073 1072

35
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Three vortices (2D)

Decay of the error as a function of the thresholding parameter:

10'1g
10_2?
10_3g

10_4g

10—5?

[
9
&)
il

107 3

F Co=10

CDF4/4

(
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Impulsively started cylinder (2D)

Vorticity field with block-based grid superimposed in the lower half.

s §
- 50, %
-100.
T T T i 1 T T t
e+ —r $
1%+ =5 = :
‘}.4> + 4 + :4
+—— TIT] -~ - e~
) — —— — " .
b+ : ——t
‘ .l -
+ + + + + + f | + . + +

Level 1 computation (coarse). Level 4 computation (fine)

37
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Impulsively started cylinder (2D)

Computational parameters:

A Parameter

level 1 level 2 level 3 level 4
Jmax 12 13 14 15
@1 103 2.50-107% 6.25-107° 1.56-107°
Co 12.5 25 50 100
C, 1.01-100% 251-107°% 6.29-107¢ 1.57.10°¢
Gig 62-102 31-10/%¢ 15:-100% 77107

Mask function for the sponge.

38
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Impulsively started cylinder (2D)
Drag coefficient as a function of time, compared with results from the literature.
1.0 5
0.8 -
0.6 - —— Kevlahan et al. — Jux =12
--=-- Koumoutsakos et al. —— Juax =13
0.4 4 —-—- George et al. — Jux=14
-~ FLUSI spectral — Jnax =15
(}..). 1 1 | 1 | 1 1
0.0 0.5 1.0 1.5 2.0 2.9 3.0

Our results are obtained with CDF 4/0 wavelets.
Reasonable agreement after t=0.5.

ACM not well suited for impulsive start.
39
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Flapping wing (3D)

Suzuki’s test case. A: visualization of the wing beat.

A downstroke upstroke

t/T = 0.45 t/T = 0.975
t/T = 0.525

The rigid wing moves in a horizontal stroke plane with varying angle of attach.
The motion is symmetrical in down and upstroke.

Ref.: K. Suzuki, K. Minami, and T. Inamuro. Lift and thrust generation by a butterfly-like

Flapping wing-body model: Immersed boundary-lattice Boltzmann simulations.
J. Fluid Mech. , 767:659-695, 2015.

40
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Flapping wing (3D)

Computational parameters used in the simulations:

Jmax hwing / Ax Ce Co Cn Csp
coarse 5 4.9 1.6-100% 25 264-100% 1.0-10°3
medium 6 9.8 4-1073 3536 661-10° 7.1-10°*%

fine 7 19.6 103 50 1.65-10° 5.107%

41
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Flapping wing (3D)

Time evolution of lift and drag and comparison with results from the literature.

D

lift dra
0.5 0.8 g

—-—- Suzuki et al. 2015 -
—.— Dilek et al. 2018 R

0.6 -
—6— Engels et al. 2016
— Jmax =5
04— Jmax =6
— Jmax =7

0.2 1

0.0

—0.2 1

—0.4 A

3.0 3.2 3.4 3.6 3.8 4.0
t/T
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Bumblebee

Bumblebee model

R=132mm
f=152Hz

Uk =25m/fs

m = 175 mg
Re = 2060
Tu=1'fug =0.0-0.99

Tethered or free flight (0 or 6 degrees of freedom)

43

Engels et al. Bumblebee flight in heavy turbulence. Phys. Rev. Lett, 2016



Aix:-Marseille
universite

£

44



AixMarseille
universite




AixMarseille
universite

“ Flow and Grid (J=8)
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Performance g

el

« Depending on the number of refinements level, speed up compared to spectral
code increases

« Our new code is competitive with spectral method

Parameter  level 1 level 2 level 3
Jmax 6 7 8
o 4-107%  1-107% 251073
Co 25 39 50

C,  545-107* 1.36-107* 3.14-107°

Tepy 1770 15 236 155 142

Teeu 95858 5600655 12 131 077
(spectral)

speedup 15.2 36.8 78.0

47
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Bumblebee
Wingbeat of the bumblebee model in forward flight:

downstroke

During the downstroke the angle of attack is more
elevated than during the upstroke.

48



Bumblebee

Computational parameters for three levels of simulation.
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Foar  Pinging i C Co G G
coarse 6 4.4 4.1072 25 5.45-100% 1.0.-1073
medium 7 8.8 1-1072 3536 1.36-100* 7.1.107*
fine 8 176 25:10° 50 341-16°> 5:101

49
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Bumblebee
Lift and drag force.
lift drag
| D :
4

2.0 2.2 2.4 2.6 2.8 3.0
t/T

Results obtained with CDF 4/0 wavelets.

Engels et a. 2016
coarse

medium

fine

2.0 2.2 2.4 2.6 2.8 3.0
t/T

Engels et al. 2016 are Fourier pseudo-spectral computations with Flusi. 50



Bumblebee

Grid sparsity as a function of time.

(
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4% -

3%

2% -

1% -

Results obtained with CDF 4/0 wavelets.
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Bumblebee

Bumblebee simulations: coarse grid

A Jmax =6

2D projection of the computational grid.

Visualization of the flow field.
Isosurface of vorticity magnitude.
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Bumblebee

Bumblebee simulations: medium grid

P = 1
] L, L,
Y &€ 7
s HH T | I I
i i: o :
] I TTTTT

||w|]| =50

2D projection of the computational grid.

Visualization of the flow field.
Isosurface of vorticity magnitude.
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Bumblebee

Bumblebee simulations: fine grid

2D projection of the computational grid.

Visualization of the flow field.
Isosurface of vorticity magnitude.

54



Computational performance
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Figure 7: Computational performance on randomly generated 3D grids. A: CPU cost per grid point per right
hand side evaluation as a function of Bs, measured on three supercomputers (Irene SKL, Irene AMD, Zay
SKL). For comparison, cost using the pseudospectral FLUSI code on Irene SKL is included as well. Note only
one simulation is shown, independent of Bs. Shaded areas correspond to mean + 1 s.d. B: Cost as a function
of Ny/Ncpy for different Bs, computed on Nepy =200 cores on Zay SKL. C: for Bs =23, cost as a function
of Ncpu (weak scaling). For each datapoint load Np/Ncpy is sufficiently high. D: fraction of cost spend on
grid refinement, time evolution and coarsening (=100%), and ghost node synchronization via MPI. Computed
on Ncpy =200 cores on Zay SKL. Results are obtained with CDF 4/0 wavelets and RK4 scheme (s=4).
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Figure 8: Computational performance in bumblebee simulations. A: time-averaged total number of points on

the grid NpointsszBg as a function of Bs B: Total cost per time unit of a simulation with different Bs on
different supercomputers. C: Strong scaling test on the 'fine’ (cf Fig. 5) resolution simulation of the bumblebee

on different supercomputers. For the simulated time span (t=0.1T), N, ranges from 49344 to 84176. Colored 56
labels indicate Ncpy. Dashed line shows ideal scaling. Results are obtained with CDF 4/0 wavelets.



Bumblebee behind fractal tree
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Figure 9: Bumblebee behind a fractal tree. Top part shows the setup consisting of a bumblebee and a tree-
inspired fractal turbulence generator composed of rigid cylinders. Right part illustrates the flow field with an
isosurface of the Q-criterion. Time in figure is t/T =8.0, results obtained with CDF 4/0 wavelets. Bottom
inset shows the axial force, i.e., the force on the bumblebee acting in the direction of the fractal tree. Force
decreases with time as the fractal tree's wake develops.
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We presented the open-source wavelet-adaptive code WABBIT, which can be
used to solve PDEs on adaptive, block-based grids.

Our physical model is based on artificial compressibility and volume penalization,
which is a very general framework .

The choice of parameters of the model has been discussed .

The CPU cost is of the same order of magnitude as a Fourier pseudospectral code:
savings in grid translate directly to CPU time and memory compression .

Using the multiresolution threshold we can also perform simulations in the spirit
of ‘coherent-vortex simulation’. First results look promising.

Ref.: T. Engels, K. Schneider, J. Reiss and M. Farge. A wavelet-adaptive method for multiscale
Simulation of turbulent flows in flying insects. Commun. Comput. Phys., 30(4), 1118-1149, 2021.

https:/ /github.com/adaptive-cfd/WABBIT

Related publications, codes, videos etc can be found on

http://aifit.cfd.tu-berlin.de  https://www.i2m.univ-amu.fr/perso/kai.schneider/



What next?

Adaptive computations of insects with flexible wings.
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Ref.: H. Truong, T. Engels, H.

jw/
hmanh, D. Kolomenskiy, F. Lehmann and K. Schneider.

An experimental data-driven mass-spring model of flexible Calliphora wings.

Bioinspiration & Biomimetics, doi.org/10.1088/1748-3190/ac2f56, 2021, in press.
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Obrigado pela sua atengao.
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