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Multiscale approximations and applications

Sketch of the lecture

1. Subdivision schemes, decimation schemes and associated

multi-resolutions

2. Construction of decimation schemes associated to a given

subdivision scheme

3. Construction of the details operators

4. Properties of multi-resolutions and applications to compression

5. Application: Convergence of derivatives

6. About divided differences

7. Key properties
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8. Smoothing

Convergence result

Numerical tests and application

9. Conclusions
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1) Subdivisions, decimations and associated multi-resolutions

Subdivision:h : f0 !→ {f0, f1, ..., f j, ...}, f j = (f j
k)k∈Z ∈ l∞((Z)

with h







l∞(Z) → l∞(Z)

f j−1 !→ f j = h(f j−1)
h being local and r-shift

invariant (θrhf = hθf for (θf)k = fk+1

Decimation: h̃ : f j !→ {f j−1, f j−2, ..},

with h̃







l∞(Z) → l∞(Z)

f j !→ f j = h̃(f j)
h̃ being local and r-shift invariant

(θh̃f = h̃θrf for (from now r = 2)

• Linear subdivision: f1
k =

∑

ak−2lfl, References: N. Dyn (1992), A.S

Cavaretta et al.(1991)

• Linear decimation: f0
k =

∑

ãl−2kfl.
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1) Subdivisions, decimations and associated multi-resolutions

f j = h̃f j+1

f j+1

dj = g̃ej+1

, ej+1 = (I − hh̃)f j+1

hh̃
g̃

g

M : {f0, d0, d1, ..., dj} !→ f j+1.

Consistency:















(I − gg̃)(I − hh̃) = 0,

I − h̃h = 0,

h̃g = 0.
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1) Subdivisions, decimations and associated multi-resolution
Wellknown situations

Interpolatory subdivision scheme =⇒ h̃ is the subsampling

operatorf j
k = f j+1

2k , details are differences at odd positions

Linear decimation and subdivision schemes are constructed together

(Wavelet multiscale analysis): consistency =⇒ ej+1 ∈ Kerh̃ and g is a

projection on Kerh̃ or any isomorph space.

What about other situations?
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1) Subdivisions, decimations and associated multi-resolution
Other situations

• Incorporate data information into multiscale transform: data

fitted schemes, position dependent schemes, data dependent

schemes

• Incorporate nonlinear constraint into the multiscale transform

(∀j, f j ∈ M)
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2) Construction of decimation schemes associated to

a given subdivision scheme: Uniform linear subdivision
Proposition. (Linear scheme) References: Kui et al. (2016)

Let h be a linear subdivision of mask {hn−2α, hn−2α+1, . . . , hn, hn+1}

H =



































hn hn−2 · · · hn−2α 0 · · · 0

hn+1 hn−1 · · · hn−2α+1 0 · · · 0

0 hn hn−2 · · · hn−2α · · · 0

0 hn+1 hn−1 · · · hn−2α+1 · · · 0
...

...

0 0 · · · hn hn−2 · · · hn−2α

0 0 · · · hn+1 hn−1 · · · hn−2α+1



































.

If det(H) != 0, there exists at most 2α consistent elementary decimation

operators whose masks are of length not larger than 2α. These masks are

given by each row of H−1.
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2) Construction of decimation schemes associated to

a given subdivision scheme: General linear subdivision
Proposition. (Generation of all consistent decimations)

Let {h̃i}1≤i≤2α be the set of elementary consistent decimation

operators.

For any decimation operator h̃ constructed from (h̃k)k∈Z and any

integer t, we define Tt(h̃) the decimation operator related to the

sequence (h̃k−t)k∈Z.

Then, all the consistent decimation operators can be constructed as
∑

t∈T

∑

i∈I

ci,tT2t(h̃
i),

with

∀t ∈ T ⊂ Z,
∑

i∈I

ci,t = δt,0, and 0 ∈ T .
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2) Construction of decimation schemes associated to

a given linear subdivision scheme
Example of shifted Lagrange subdivision

Definition (degree 3) References: Dyn et al. (2004)

Pk(x) = L−1(x)fk−1 + L0(x)fk + L1(x)fk+1 + L2(x)fk+2.

where {Ln(x)}−1≤n≤2 denotes the degree 3 Lagrange interpolatory

function associated to the stencil {−1, 0, 1, 2}.







(hLf)2k = Pk(
1
4 )

(hLf)2k+1 = Pk(
3
4 ).
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Decimations associated to the Shifted lagrange subdivision

Mask of the Shifted lagrange subdivision

Mh = {hk,−4 ≤ k ≤ 3} = {−
5

128
,−

7

128
,
35

128
,
105

128
,
105

128
,
35

128
,−

7

128
,−

5

128
}.

Matrix of the correspondant consistent elementary decimations

H̃ =


























h̃0

h̃2

h̃4

h̃6

h̃8

h̃10



























=



























24367
1152 − 63605

1152
31115
576 − 10325

576 − 4165
1152

2975
1152

2975
1152 − 4165

1152
1771
576 − 565

576 − 245
1152

175
1152

175
1152 − 245

1152
875
576 − 245

576 − 133
1152

95
1152

95
1152 − 133

1152 − 245
576

875
576 − 245

1152
175
1152

175
1152 − 245

1152 − 565
576

1771
576 − 4165

1152
2975
1152

2975
1152 − 4165

1152 − 10325
576

31115
576 − 63605

1152
24367
1152



























.
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2) Construction of decimation schemes associated to

a given subdivision scheme:
Non linear subdivision scheme written as a perturbation of a linear scheme

f j+1 = hf j = hLf j + hNf j

Applying h̃L we get a fixed point relation:

f j = h̃Lf
j+1 − h̃LhNf j .

Proposition.

If hL is such that h̃LhN is contractive then the above formula defines

a non linear decimation operator consistent with h.
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2) Construction of decimation schemes associated to

a given non linear subdivision scheme:

Example of the Shifted PPH subdivision scheme

Let

A(x, y) = x+y
2 , H(x, y) = xy

x+y
(sgn(xy) + 1) , Dk = fk+1 − 2fk + fk−1,

Define Nk as:

if |Dk| ≤ |Dk+1|, Nk(x) = 2L2(x) (H(Dk, Dk+1)−A(Dk, Dk+1)) ,

if |Dk| > |Dk+1|, Nk(x) = 2L−1(x) (H(Dk, Dk+1)−A(Dk, Dk+1)) ,

and






(hNf)2k = Nk(
1
4 ),

(hNf)2k+1 = Nk(
3
4 ),

then hf = hLf + hNf defines the shifted PPH subdivision scheme

References: Amat et al. (2011)
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Example of the Shifted PPH subdivision scheme

Moreover, for ((h̃L)k,−4 ≤ k ≤ 3) = 1
2 h̃4 +

1
2 h̃6 =

( 95
2304 ,−

133
2304 ,−

35
256 ,

1505
2304 ,

1505
2304 ,−

35
256 ,−

133
2304 ,

95
2304), the operator h̃LhN

is contractive and a consistent decimation h̃ is therefore available.
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3) Construction of the details operators

Definition of the details

Since ej+1 = (I − hh̃)f j+1,we have h̃Lej+1 = 0. Therefore there

exists square matrices M,N formed using Mh̃L
such that

Mej+1
even = Nej+1

odd .

If N invertible one can define djk = ej+1
2k , and we have

ej+1
even = dj , ej+1

odd = N−1Mdj .
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4) Properties of multiresolutions and numerical applications

• Convergence and stability of subdivisions (hL and h), References:

Dyn et al. (2004) , Amat et al. (2011)

• Decay of the errors References: Daubechies (1992) ,

• Stability of the decimations ((h̃L, h̃),

• Performance for image compression.
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4) Properties of multiresolutions and numerical applications
Decay of the errors

Proposition. (Linear multiresolution) Let h be a linear uniform

stable subdivision operator and h̃ be a linear stable and consistent

decimation operator. If h quasi reproduces polynomials up to degree

p, there exist a constant C such that for all j ∈ Z, ||ej || ≤ C2−(p+1)j .
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4) Properties of multiresolutions and numerical applications
Decay of the prediction error

Proposition. (Non linear multiresolution)

Let h be a non-linear subdivision scheme with h = hL + hN where hL

is a linear subdivision quasi-reproducing polynomial of degree p. If,

for all f j ∈ l∞(Z), there exists a constant C independent on j such

that ||hNf j || ≤ C2−q(j+1), if h̃ is a stable consistent decimation

operator, then the decay rate of the associated prediction error is at

least min(p+ 1, q).
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Decay of the prediction error

12 11 10 9 8 7 
-40

-35

-30

-25

-20

-15

-10

-5

shifted PPH 
shifted Lagrange 
interpolatory Lagrange

Figure 1: log of the prediction error versus scale from 12 to 7, slope for 4-
point interpolatory Lagrange, 4-point shifted Lagrange and 4-point shifted
PPH scheme are 4.00717, 5.0379 and 4.21979
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4) Properties of multiresolutions; Stability of the decimations

Proposition. (Linear decimation) The decimation operator h̃L is

stable if and only if there exists i ∈ N∗, such that the subdivision h

constructed from sequence (2h̃i
L)l, l ∈ Z is stable.

We are then back to a convergence problem for a uniform subdivision.
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4) Properties of multiresolutions; Stability of the decimations

Let h = hL + hN and h̃L be a consistent linear decimation such that

h̃LhN is contractive. Then,

Proposition. (Non linear decimation)

If there exists a constant µ < 1 such that for all p ∈ N∗, hp
LhN is µp

Lipschitz then the non linear decimation defined trough the fixed point

equation f j = h̃Lf j+1 − h̃LhNf j is stable.
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4) Numerical applications: performance for image compression

compression ratio
1 2 3 4 5 6 7
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interpolatory pph
interpolatory lagrange
shifted lagrange
shifted pph

Figure 2: PSNR versus compression ratio for interpolatory Lagrange,

shifted Lagrange, interpolatory PPH and shifted PPH multiresolu-

tions.
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4) Numerical applications: performance for image compression

compression ratio
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Figure 3: PSNR versus compression ratio for the 4-point shifted PPH

subdivision scheme with three different consistent decimation opera-

tors
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Partial conclusions

1. General tool for the construction of decimations consistent with

linear subdivision,

2. Construction of decimations consistent with non linear

subdivision schemes constructed by perturbation,

3. Definition of the details,

4. Properties of the multiresolution,

5. Applications to the Shifted lagrange/PPH schemes.
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5) Application: Convergence of derivatives

Wellbore monitoring
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1) Motivation. Convergence of derivatives
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1) Motivation- Convergence of derivatives
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1) Convergence of derivatives

• Local scale

• Smoothing
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2) Basics properties of subdivisions schemes and multiresolution

• Convergence of the subdivision (h), Ref: Dyn et al. (2004)

∀f0, ∃f = h∞f0 ∈ C0 such that lim
j→+∞

||f j
k − f(xj

k)||∞ = 0.

• Limit function of the subdivision scheme: If Φ = h∞(δ0) with

δ0k = δk,0 then h∞f0 =
∑

k f
0
kΦ(x− k). The regularity of Φ

defines the regularity of the scheme.

• Stability of the subdivision (h). The operators h and h−1 are

continuous:

h : {f0, d0, d1, ..., dj} ↔ f j+1.
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3) Basics on divided differences

• ∆1 : Xj !→ ∆1Xj with(∆1Xj)k = 2j(Xj
k+1 −Xj

k)

• ∆n = ∆n
1

• If f ∈ C∞(R) and f j
k = f(k2−j) then, for some q ∈ {1, 2}:

(∆nf
j)k = f (n)(k2−j) + 0(2−qj).
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4) Key properties
Converging subdivision scheme and finite differences

• Theorem(Ref: Dyn (1992) ) A subdivision scheme admits a Cm

limit function if and only if there exists a converging subdivision

scheme for the divided differences ∆m

• If Xj+1 ↔ {X0, e0, e1, ...; ej} then

∆mXj+1 ↔ {∆mX0,∆me0,∆me1, ...,∆mej}
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4) Key properties for a multiresolution of order p

Decay of the details, ε-smoothing and local level

• Theorem(Ref: Kui et al. (2021) ) If f ∈ C∞, fJ
k = f(k2−J) and if

h is a multiresolution of order p then there exists Cd such that:

∀j ≤ J − 1, ||dj|| ≤ Cd2
−j(p+1).

• X̃J is said to be an ε-smoothing of XJ if ∀j ≤ J − 1, d̃jk ∈ {djk, 0}

and ||XJ − X̃J ||∞ ≤ ε

• The p-local level of X̃J at position k2−J is defined as:

jp

(

X̃J , k2−J
)

:= min{j ≤ J such that
[

∀j′ > j, such that (j′, k′) ∈ CS(k2
−J), d̃j

′
−1

k′ = 0
]

}.
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5) Lp,ε smoothing definition: detail troncation
1) Initialization: d̃j := dj for all levels j ∈ {J − j0, . . . , J − 1};

2) For all levels j from highest (J − 1) to lowest (J − j0):

• For all
∣

∣

∣
d̃
j
k

∣

∣

∣
sorted in decreasing order (then starting from highest value):

(a) Set d̃
j
k := 0;

(b) Multiresolution reconstruction: X̃J is constructed from the

decomposition given by
{

XJ−j0 , d̃J−j0 , d̃J−j0+1, . . . , d̃J−1
}

;

∗ If
∥

∥

∥
X̃J −XJ

∥

∥

∥

∞

< ε, then proceed with the next d̃
j′

k′ ;

∗ If not, set back d̃
j
k := d

j
k, then proceed with the next d̃

j′

k′ ;

3) Stopping condition:

(a) If step 2) results in no modification of the sequences d̃j for all levels

j ∈ {J − j0, . . . , J − 1}, then stop;

(b) Otherwise, repeat steps 2) and 3);

jp,ε, the p, ε-local level of XJ is defined as the p local level of Lp,ε(XJ )
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5) Lp,ε smoothing properties

f ∈ C∞, fJ =
(

f(k2−J)
)

k∈ZZ
,
∥

∥fJ −XJ
∥

∥

∞
<

ε/2

1 + CrCd
,

• jp,ε(fJ , k2−J) = −Clog2(ε)/(p+ 1) decay of the details,

• ||∆nfJ −∆n(Lp,ε(fJ)|| ≤ Cε1−
n

p+1 details of the multiresolution

decomposition of ∆nXj,

• Proposition There exists a polygon gJ , constructed from a

smoothing of XJ , such that
∥

∥XJ − gJ
∥

∥

∞
< ε,

∥

∥fJ − gJ
∥

∥

∞
< ε,

and whose local levels are at most the local levels of L
p,

ε/2
1+CrCd

fJ

for all k ∈ ZZ.Stability of the multiresolution
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5) Lp,ε smoothing. Final result
Theorem. (Ref: Garcia et al. (2021) )

Let ε > 0, K ⊆ IR be a compact, f ∈ C∞(IR) and

fJ =
(

f(k2−J)
)

k∈ZZ
be the polygon describing f at level J . Let also

XJ =
(

XJ
k

)

k∈ZZ
be a polygon such that

∥

∥fJ −XJ
∥

∥

∞
< ε.

Using a multiresolution analysis of order p and regularity m ≤ p,

then, for all integer n such that n ≤ m:
∥

∥

∥
f (n) −∆n

(

Lp,εX
J
)

∥

∥

∥

∞,K
≤ C12

−Jq + C2ε
1− n

p+1 (0)
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5) Numerical test

• Subdivision scheme: 8-points shifted Lagrange subdivision

scheme (p = 8, m = 4)

• Associated ( non interpolatory) multiresolution

• Expected slope coefficient: 1− n
9

• J ≥ 6

• CPUtime - 2s on a personal computer
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5) Numerical test
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5) Application
Ref: Garcia et al. (2019)
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5) Application

39



5) Conclusions

1. Regular multiresolutions are usefull

Adaption to finite length interval

Adaption to non regular sampling

2. Extension to multi dimension (convergence of the normal of a

sequence of surfaces)

3. Multiresolution framework for manifold values
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