

Fomentando o desenvolvimento das energias renováveis no Brasil

Enio B. Pereira, D.Sc.; André R. Gonçalves, M.Sc.; Rodrigo S. Costa, D.Sc.

Ministério da Ciência, Tecnologia e Inovação

Tópicos a serem abordados

- 1. Introdução sobre LABREN e o SONDA: quem somos e qual a nossa motivação?
- 2. Mapa da rede
- 3. Instrumentos e medidas
- 4. Qualificação e armazenamento
- 5. Disseminação
- 6. Calibração de sensores
- 7. Furto e vandalismo
- 8. Logística de manutenção
- 9. Financiamento
- 10. Conclusões e observações relevantes

Introdução sobre o LABREN e o SONDA: quem somos e qual a nossa motivação?

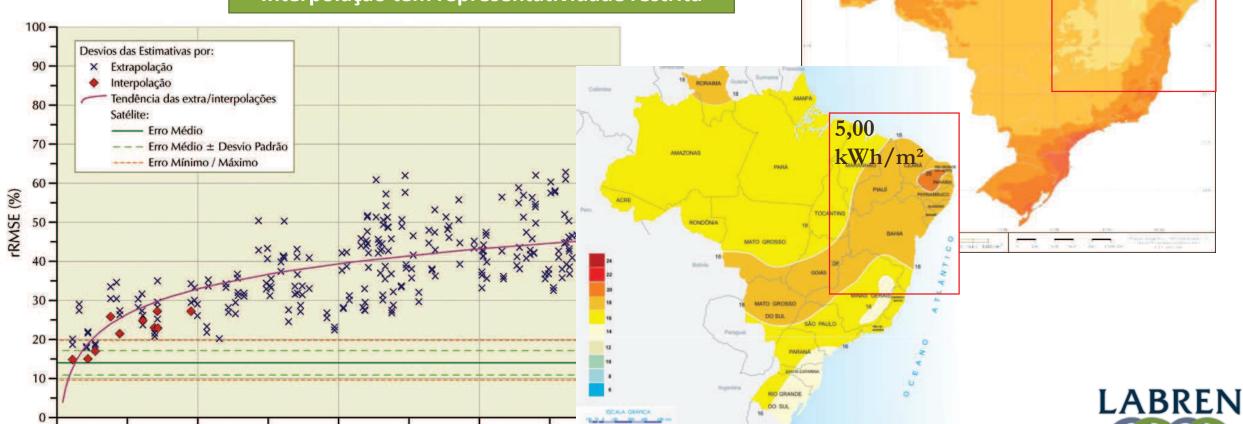
O Laboratório de Estudos de Modelagem de Recursos Renováveis de Energia (LABREN) realiza atividades de pesquisa e ensino de meteorologia aplicada ao setor de energia e sobre os impactos das energias no sistema climático, através de atividades de modelagem computacional e de dados observacionais.

Atua:

Na estimativa de recursos solar e eólico, utilizando dados de satélites e modelos computacionais;

No desenvolvimento de ferramentas de previsão de geração de energia solar e eólica;

Energia, variabilidade e impacto das mudanças ambientais globais sobre os recursos solar e eólico;



Interações com áreas afins.

Grandes diferenças no potencial solar

Interpolação tem representatividade restrita

700

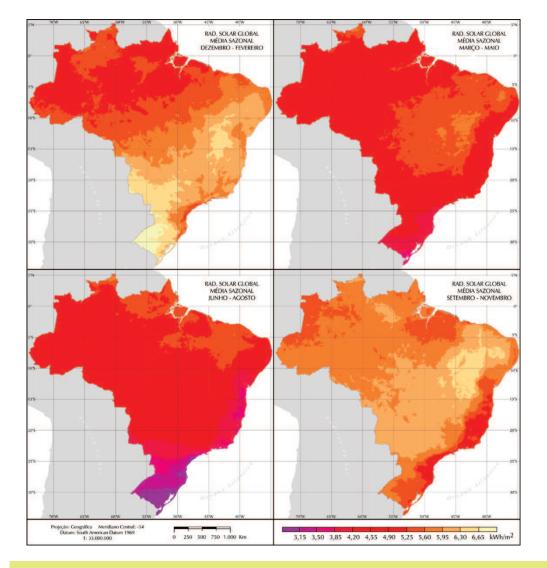
RADIAÇÃO SOLAR CLOBAL HORIZONTAL MÉDIA ANUAL

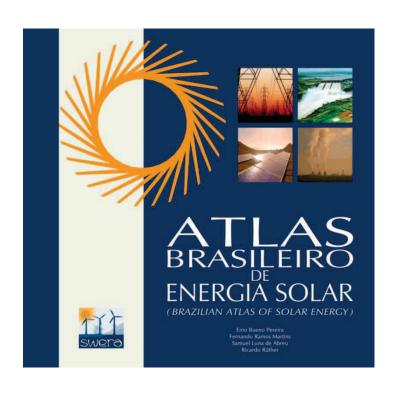
 5.9 kWh/m^2

100

200

300


400


Distância da Estação Mais Próxima (km)

500

600

Atlas Brasileiro de Energia Solar – 1ª Edição

INPE/UFSC, 2006

Introdução sobre o LABREN e o SONDA: quem somos e qual a nossa motivação?

Dentro das atividades de campo, o LABREN instalou e mantém o SONDA - Sistema de Organização Nacional de Dados Ambientais – que trata da coleta de dados solarimétricos e anemométricos, bem como dados meteorológicos complementares aos estudos de energia solar e eólica.

Rede SONDA

Sistema de Organização Nacional de Dados Ambientais

Implementação de infra-estrutura física e de recursos humanos destinada a levantar e melhorar a base de dados dos recursos de energia solar e eólica no Brasil;

Dados voltados para quantificação dos recursos solar e eólico no território brasileiro, aplicados na validação de modelos, estudos de perfis de vento, dentre outros.

Mapa da Rede SONDA

Tipos de estações

Solarimétricas:

Medem radiação solar incidente global, difusa, direta normal, PAR, iluminância, espectrofotometria solar.

Anemométricas:

Torres anemométricas com 50 metros de altura, dotadas de anemômetros e termômetros a 10, 25 e 50 metros.

Também são medidos dados meteorológicos para análises complementares de recursos energéticos, como umidade relativa, pressão atmosférica e precipitação.

Mapa da Rede SONDA

Estações próprias

Estação	Tipo	UF	Altitude (m)
Belo Jardim	Α	PE	718
Brasília	SA	DF	1023
Cachoeira Paulista	S	SP	574
Caicó	S	RN	176
Campo Grande	S	MS	677
Cuiabá	S	MT	185
Ourinhos	SA	SP	446
Palmas	S	ТО	216
Petrolina	SA	PE	387
Rolim de Moura	S	RO	252
São Luiz	S	MA	40
São João do Cariri	Α	РВ	486
São Martinho da Serra	SA	RS	489
Triunfo	А	PE	1123

Estações parceiras

Estação	Tipo	UF	Altitude (m)
Chapecó	S	SC	700
Curitiba	S	PR	891
Florianópolis	S	SC	31
Joinville	S	SC	48
Natal	S	RN	58
Sombrio	S	SC	15

Totalizando 20 estações de coleta

Mapa da Rede SONDA

Localização das estações


Distribuição espacial busca cobrir os regimes climáticos brasileiros;

Estabelecimento de parcerias e cooperações

Instituições parceiras fornecem dados para a rede;

Cooperações e parcerias são interessantes para apoio, estrutura, segurança...

EMBRAPA, EMPARN, UNIDERP, INPE*, UNESP, UFT, UNIR, UFCG, UFSM, EPAGRI, TECPAR, UFSC, UNIVILLE, IFC-Sombrio, Aeronet – NASA, BSRN, dentre outras...

BR PETROBRAS

LABREN

Solarimétricos

Piranômetro:

Radiação Global; Difusa com dispositivos de sombreamento;

Precisão dos sensores classificada em 1ª e 2ª classes;

Luxímetro:

Iluminância;

Sensor PAR:

Radiação Fotossintéticamente Ativa;

Solarimétricos

Pirgeômetro:

Onda longa;

Pireliômetro:

Radiação Direta;

Rastreador solar:

Radiação Difusa;

Anemométricos

Anemômetro de hélice: Intensidade e direção do vento;

Anemômetro sônico: Intensidade e direção do vento (alguns modelos com componentes verticais);

Meteorológicos

Barômetro:

Pressão atmosférica;

Termo-hogrômetro:

Temperatura do ar e umidade relativa;

Pluviômetro:

Precipitação;

Sensores complementares

Fotômetro Aeronet:

Diversos produtos de aerossóis atmosféricos;

Imageador All Sky:

Imagens para identificação de nuvens;

Qualificação

Dados disponibilizados passam por processos de validação, para garantir sua confiabilidade;

O processo de qualificação é baseado no controle de qualidade de dados adotado pela BSRN (Baseline Surface Radiation Network);

Dados meteorológicos e anemométricos usam critérios de análise estabelecidos pela Webmet.com;

Assim como o WRMC (World Radiation Monitoring Center) procede com relação aos dados da BSRN, a rede SONDA não altera sua base de dados original;

Etapas dos algorítimos

Etapas	Variáveis Anemométricas	Variáveis Meteorológicas	Variáveis Radiométricas					
1	Algoritmo 1 Dado suspeito quando físicamente impossível.							
2	Algoritmo 2 Dado suspeito quando o evento é extremamente raro.							
3	Algoritmo 3 Dado suspeito quando apresenta u temporal não condizente com o esp variável.	Algoritmo 3 Dado suspeito quando inconsistente com medidas apresentadas por outras variáveis da mesma estação.						
4	Algoritmo 4 Dado suspeito quando inconsistente com medidas apresentadas por outras variáveis da mesma estação.	Algoritmo 4 (ainda não aplicado) Dado suspeito caso a medida esteja inconsistente quando comparada com estimativas de modelos computacionais.						

resultados das etapas:

o - nenhum procedimento foi executado 2 - dado suspeito de ser incorreto 5 - procedimento não pode ser executado 9 - dado de boa qualidade ou não suspeito

Estatísticas de qualidade

Disponibilizadas no site do SONDA, junto aos dados;

Dependência dos critérios de qualificação;

Existem critérios "perfeitos"?

Qualificação humana: necessária?

Armazenamento

Bases em formato ASCII;

"Dificuldade" na realização / integração de consultas;

Solução: Banco de Dados?

Desenvolvimento do modelo entidade-relacionamento;

Testes de implementação;

Questões técnicas – SGBD, desempenho, tamanho da base, etc...

Disseminação

Website SONDA

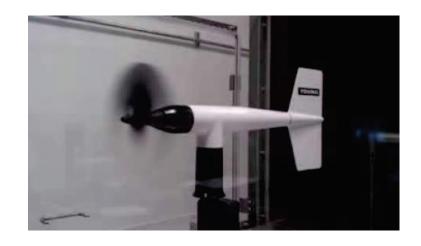
Informações sobre as estações, critérios de qualificação, qualidade e disponibilidade dos dados, etc;


http://sonda.ccst.inpe.br

Disseminação

Calibração de sensores

- Demanda estimada: 20 calibrações/mês
- -10 a 15 sensores por estação / aprox. 20 estações
- Intervalo de 2 anos (média) entre calibrações
- Limitações do LIM/CPTEC
- Tempo requerido por calibração (falta de pessoal)
- Infraestrutura para calibrações anemométricas



Calibração de sensores

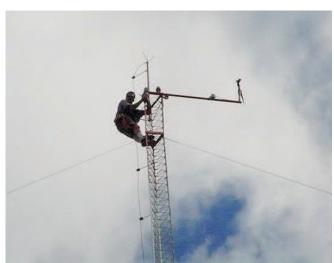
Calibrações externas:

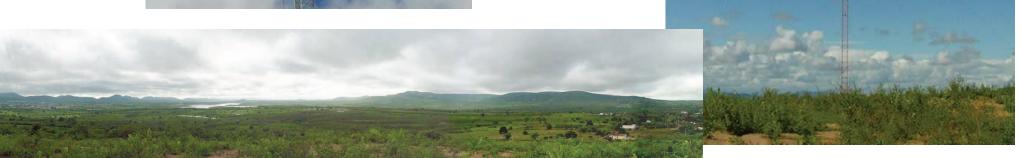
- No Brasil:
 - Sensores anemométricos
- No exterior:
 - Fotômetro Aeronet, pireliômetros
 - 3 a 6 meses => necessidade de nro maior de sobressalentes

Furto e vandalismo

• Estação de Referência de Ouro Preto D'oeste – RO

(Fazenda particular)





Furto e vandalismo

• Estação Anemométrica de Belo Jardim - PE (Área da prefeitura)

Furto e vandalismo

• Estação Anemométrica de Piranhas-AL (Cooperativa de Caprinocultores)

Falta de apoio local

• Estação de Referência de Rolim de Moura – RO (Campus UNIR)

Falta de apoio local

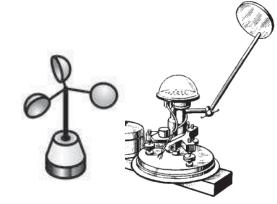
• Estação Solarimétrica de Cuiabá (Campus INPE)

Gestão Técnico-administrativa

Capacitação de equipe

Controle técnico (estado, estoque e patrimônio)

Documentação de manutenção (relatórios de visita, certificados, etc..)



Telemetria e acesso remoto

Gestão Logística e Financeira

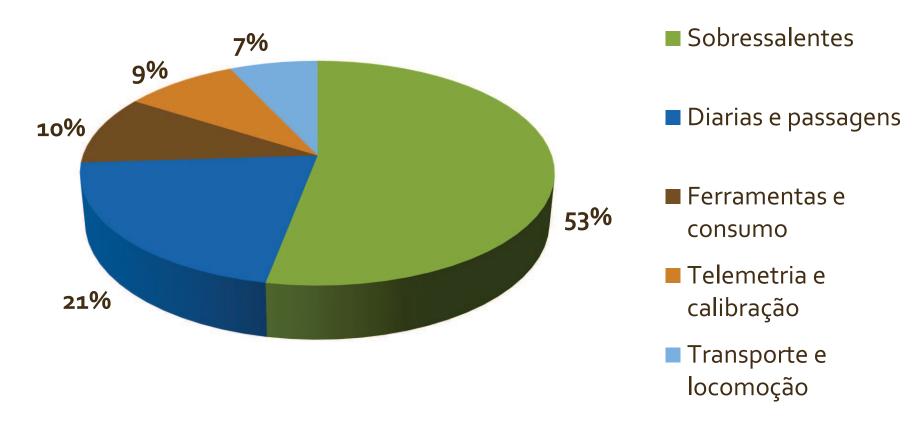
Aquisição sobressalentes

Pequenos gastos

Reparo e garantia

Transporte de equipamentos

Gestão da rede

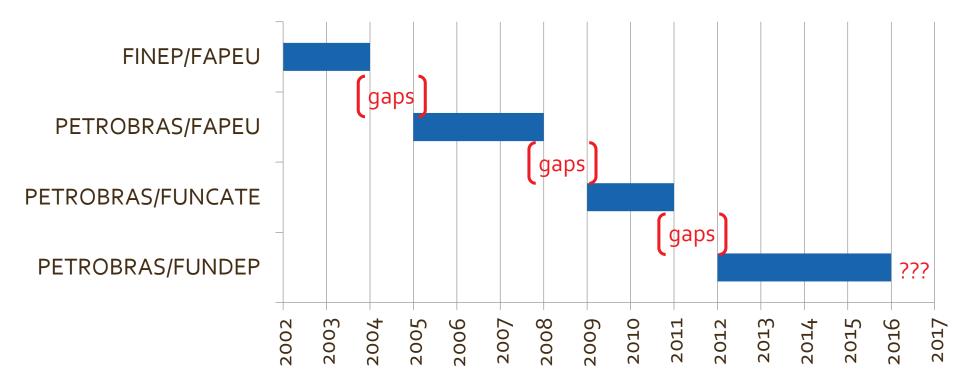


Custo estimado

SONDA

Custo anual estimado por estação

R\$ 20.000/estação/ano (20 a 30% custo equipamentos)



Financiamento

- Natureza do serviço (logística, gastos, agilidade, etc...) dificulta a manutenção exclusivamente por recursos institucionais;
- Histórico de financiadores SONDA (12 anos)

Financiamento

- Ou seja, projetos de P&D mantém a rede funcionando precisamos deles!
- Pelos motivos diversos, estamos sendo cada vez mais demandados pela indústria, mas temos toda uma burocracia para vencer;
- NIT nos auxilia nestes processos;
- Precisamos buscar uma solução eficiente...

Conclusões e observações relevantes

- Complexidade na operação de uma rede de de coleta de dados de superfície;
- Peculiaridades das observações operacionais em relação às experimentais;
- Dificuldade de se manter uma rede observacional pública no Brasil, por razões logísticas e finaceiras;
- Precisamos buscar uma solução eficiente para a prestação destes serviços que a sociedade e a indústria demanda cada vez mais!

OBRIGADO!

"Fornecer conhecimento e quando possível, propor soluções que permitam o desenvolvimento com equidade e redução dos impactos sobre o ambiente no planeta Terra."

enio.pereira@inpe.br andre.goncalves@inpe.br rodrigo.costa@inpe.br

http://www.ccst.inpe.br http://sonda.ccst.inpe.br http://labren.ccst.inpe.br