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Introduction

Questions:

• What causes aspect sensitivity at VHF?

• Why is there no aspect sensitivity at UHF?

Community consensus:

• Clear-air echoes are caused by Bragg scatter from turbulence

and by Fresnel scatter/reflection from “sheets”

• At VHF, Fresnel scatter/reflection dominates at small zenith angles, and turbulence

scatter dominates at large zenith angles

• At UHF, turbulence scatter dominates at all zenith angles

Hypothesis:

• Non-turbulent but corrugated interfaces may destroy aspect sensitivity.

• Isotropic scatter at UHF may in fact be rough-interface scatter.



Bragg scatter vs. Fresnel scatter/reflection:
A false alternative?

Röttger (1980, Pure Appl. Geophys.), first sentence of abstract:

“Powerful VHF radars are capable of almost continuously monitoring the three-

dimensional velocity vector and the distribution of turbulence in the middle at-

mosphere, i.e. the stratosphere and mesosphere.”

Gage (1990, p. 551f.), in D. Atlas (ed.), Radar in Meteorology:

“. . . the Fresnel scattering model could be generalized and made more realis-

tic by taking into account the effect of small-scale irregularities that would tend

to limit the transverse coherence of stable layers. Such small-scale structure un-

doubtedly leads to specular glints that cannot be treated in the context of the

present model. Presumably, the effect of such irregularities would depend greatly

on the wavelength of the probing wave. . .”



The backscattered signal

Assumptions:

• Born approximation (n fluctuations ≪ 1)

• Fresnel approximation (2nd-order approximation of phase)

Backscattered signal (Doviak and Zrnić 1984):

I = A
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Meteorological assumptions

Tatarskii (1961,1971):

n(x, y, z) is fully turbulent,

statistically homogeneous in 3D and isotropic in 3D:

Dnn(x, r) =
⟨
[n(x + r/2)− n(x− r/2)]2

⟩
= C2

nr
2/3,

Φnn(k) = 0.033C2
nk

−11/3,

Doviak and Zrnić (1984):

n(x, y, z) is statistically homogeneous in 3D but isotropic only in 2D:

Φnn(k) = Φnn

(√
k2x + k2y, kz

)
,

Here:

n(x, y, z) is a single discontinuity (“step”) in the z-direction:

n(x, y, z) = ∆nu[z − ζ̃(x, y)]− ∆n

2
. (3)



Backscatter from a rough interface

After inserting (3) into (1):

I = A exp(−ikBr0)

∫∫∫
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Assuming a Gaussian pulse-weighting function,

Wr = exp

(
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4σ2
r

)
,

and applying the modulation theorem:

Iz(x, y) =
σr√
π
∆n

∫ exp
[
−ikζ̃(x, y)

]
ik

exp
[
−σ2

r(k − kB)
2
]
dk.

(This is Bragg scatter/reflection!!!)

After assuming σr ≫ λ:
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Assuming a Gaussian beam pattern (Doviak and Zrnić 1984),
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we find

I = B
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Note: So far, we have made no assumptions about ζ̃(x, y).
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Statistical description of a corrugated sheet

Let

ζ̃(x, y) = θx + ζ(x, y), (7)

where θ is zenith angle of the beam (θ = 0 for vertical beam)

and ζ(x, y) is a zero-mean, 2D random field.

Let ζ(x, y) be statistically homogeneous, such that the 2D structure function

Dζζ(x
′, y′, x′′, y′′) =

⟨
[ζ(x′′, y′′)− ζ(x′, y′)]2

⟩
= Dζζ(rx, ry) (8)

is a function only of the difference coordinates

rx = x′′ − x′, ry = y′′ − y′

and independent of the sum coordinates

x =
x′ + x′′

2
, y =

y′ + y′′

2
.
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Radar equation for a corrugated sheet

Radar equation in general:

⟨Pr⟩
Pt

=
R

2Pt
⟨II∗⟩. (9)

Assuming |ζ̃| ≪ σ and integrating over x and y gives
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where

b = θ0r0 (11)

is the beam diameter at range r0 and

f =

√
λr0
2

(12)

is the Fresnel length.
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A simple model of Dζζ(rx, ry)

Radar equation can be integrated in closed form if Dζζ(rx, ry) is quadratic in rx and ry.

Simple model: ζ(x, y) is piecewise linear in x and y with slope angle α.

Then,

Dζζ(rx, ry) = α2(r2x + r2y), (13)

which gives the aspect sensitivity

⟨Pr⟩(θ) ∝ exp

(
−θ2

θ2s

)
, (14)

where

θ2s = 4θ20 + 2α2. (15)

Conclusions:

• θs = 2θ0 for a smooth sheet (α ≪ θ0)

• θs =
√
2α for a rough sheet (α ≫ θ0)




